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Abstract—Feature matching is a fundamental step in many
real-time computer vision applications such as Simultaneous
Localization And Mapping (SLAM), motion analysis and stereo
correspondence. The performance of these applications depends
on the distinctiveness of the visual feature descriptors used,
and the speed at which they can be extracted from video
frames. When combined with standard key-point detectors, the
rotation-aware Binary Robust Independent Elementary Features
(rBRIEF) descriptor has been shown to outperform its counter-
parts. In this paper, we present a deep-pipelined stream process-
ing architecture that is capable of extracting rBRIEF features
from high-throughput video frames. To achieve high processing
rate and low complexity hardware, the proposed architecture
incorporates an enhanced moving summation strategy to calcu-
late the key-points’ patch moments and employs approximate
computations to achieve patch rotation. Multiplier-less circuitry
is introduced throughout the architecture to avoid the use of
costly multipliers. Implementation on the Altera Aria V device
demonstrates that the proposed architecture leads to 53.3%
reduction in hardware resources (adaptive logic modules) while
achieving 50% higher accuracy (in terms of average Hamming
distance) when compared to the state-of-the-art architecture.
In addition, the proposed architecture is able to process high-
resolution (1920×1080) images at 60 fps while consuming only
456.15 mW power.

I. INTRODUCTION

The pervasive adoption of cameras in various cutting-edge
technologies today such as self-driving cars, robotics, virtual
reality and augmented reality, have elevated the need for
computer vision algorithms that are robust and can deliver
high-speed solutions. A core application in these technologies
is visual odometry or Simultaneous Localization And Mapping
(SLAM) [1], which enables the system to localize itself in
unknown environments. Feature matching plays a central role
in this application to estimate the motion trajectory from one
frame to the next. Evidently, the choice of visual feature
descriptors plays an important role in feature matching. In
addition, the feature extraction process must be achieved at
high-speed to enable feature matching between each consec-
utive frames in order to improve robustness.

There are many recent advances in the development of
feature descriptors to address the need for low complexity
and robustness in feature matching systems. Scale-Invariant
Feature Transform (SIFT) [2] and Speeded Up Robust Features
(SURF) [3] were originally introduced as feature descriptors
for feature matching systems. SIFT is robust to rotation
and illumination changes. SIFT employs eight bin orientation

Thinh Hung Pham, Phong Tran, and Siew-Kei Lam are with School of
Computer Science and Engineering, Nanyang Technological University, Sin-
gapore (email:hung3@e.ntu.edu.sg)

histograms for each of the 16 sub-blocks to generate 128-
dimensional vector to represent each description. The size
of the required vector reduces the performance of feature
matching. SURF is a faster successor of SIFT but requires 256
bytes to represent the descriptors. The descriptor size is still
infeasible for real-time feature matching on high resolution
images.

Local binary descriptors such as Binary Robust Independent
Elementary Features (BRIEF) [4], Rotated BRIEF (ORB) [5],
Binary Robust Invariant Scalable Keypoints (BRISK) [6],
and Fast Retina Key-point (FREAK) [7] were introduced to
supersede SIFT and SURF. They were developed to increase
computational speed and reduce memory storage. The works
in [5], [6], and [7] have demonstrated the superiority of the
BRIEF descriptor and its variants, namely ORB and rotated
BRIEF (rBRIEF), over the SIFT and SURF descriptors. In
addition, the experimental results on visual SLAM [1] showed
that BRIEF performs better than other binary descriptors, i.e.
BRISK and FREAK. The BRIEF feature descriptor is repre-
sented by a 256-bit vector, which is obtained by comparing the
intensity of 256 pairs of pixels in a patch centered at the key-
point. The 256 pairs of pixels are often denoted as BRIEF
point-pairs or sampling patterns. Each comparison is called
a binary test, as it produces a ‘1’ or ‘0’ depending on the
comparison result.

ORB descriptor integrates orientation and scale pyramid to
compensate for the sensitivity to rotation and scale in BRIEF.
In addition, a learning method is employed to choose the
BRIEF point-pairs that have high variance and low correla-
tion. This enhancement resulted in the rotation-aware Brief
(rBRIEF) descriptor. ORB, which consists of a key-point de-
tector and rBRIEF descriptor, quadruples FREAK and BRISK
in terms of extraction time and leads to higher matching
accuracy. The work in [8] provided a more comprehensive
assessment for a combination of detectors and descriptors
pairs in Unmanned Aerial Vehicles (UAV) guidance system.
The result showed that ORB descriptor has an excellent
performance. The authors in [9] evaluated the performance
of BRIEF, ORB, and BRISK under various distortion and
transformation images using five sets of metrics: precision,
recall, matching score, entropy, and putative match ratio.
BRIEF’s fixed pattern produces better recall and putative
match ratio than ORB or BRISK in non-geometric transforms
but resulted in lower matching scores. Under the effects of ro-
tation and scaling, ORB and BRISK outperform BRIEF in all
the metrics considered. While BRIEF exhibits slightly higher
recall and matching score over ORB and BRISK, the latter
two descriptors result in higher quality matches. An extensive
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study on 42 combination of detectors and descriptors under
various image transformations is presented in [10]. The study
revealed that ORB, which integrates rBRIEF, exhibited reliable
performance and was deemed the most suitable descriptor for
many vision applications.

The studies undertaken so far have concluded that the
ORB descriptor not only provides excellent performance in
many vision tasks but also has the advantage of requiring
low computational complexity which makes it suitable for
real-time applications. ORB feature extraction comprises of
key-point detection (e.g. FAST [11] and Harris [12] corner
detectors), and rBRIEF descriptor computation. The work
in [13] reported that the conventional BRIEF architecture
requires at least 2× more hardware resources than the FAST
architecture. Therefore, reducing the hardware resources for
rBRIEF computation will lead to low complexity ORB feature
extraction architecture that is well suited for realization on
embedded systems with tight area constraints. As such, this
paper focuses on developing an area-efficient architecture
which is aimed at extracting rBRIEF features on high-rate
pixel streams from the camera. The proposed architecture can
be integrated into a feature extraction accelerator for visual
odometry or SLAM system.

A. Related Works

In this section, we review existing hardware designs for
extracting BRIEF feature descriptors and its variants. The
hardware accelerator in [14] computes a 128-bit length de-
scriptor from BRIEF point-pairs that are sampled using Gaus-
sian distribution in 9x9 image patches. The work in [15]
utilizes a learning method [5] to build discriminative and
uncorrelated binary tests. In addition, it employs an image data
allocation scheme, wherein 4 pixels are clustered in a memory
addressable location, so computing 256-bit descriptor only
requires 15 clock cycles. To minimize the resource usage, [16]
presented an architecture that compares the pixel intensities of
a single BRIEF point-pair in each cycle. However, to generate
a 256-bit descriptor, the BRIEF module can only process one
key-point (i.e. corner) in 256 clock cycles.

As discussed in the previous section, rBRIEF has emerged
to overcome the limitations of the BRIEF descriptor which
suffers from poor invariance to rotation and scale changes.
The feature extraction architecture in [17] and [18] combined
oFAST (oriented FAST) and rBRIEF, while the work in [19]
integrates Harris-Stephens with rBRIEF. The FPGA-based
ORB implementation in [18], which integrates a key-point
detector with rBRIEF, optimizes the word length by truncating
the centroid to 8 bits based on prior studies on the distance
error, which significantly reduces the number of registers and
Look-up tables (LUTs). However, the authors only focused
on improving memory allocation for real-time SLAM but did
not provide detailed architecture for calculating the centroid,
rotating the sampling patterns, and generating the key-points.
In [17], data reuse is utilized by exploiting the incoming pixel
streams and a memory scheme. The same patch is used for
computing the descriptors of any two consecutively detected
key-points whose distance is less than the width of the patch.

This leads to over 17% reduction of the external memory
bandwidth. Also, rather than using centroid-based orientation
that leads to high computational complexity, the approach in
[20] is adopted, which relies on the comparison of adjacent
pixels on the Bresenham circle to determine the orientation.
Their work mainly focused on the architecture for FAST
and Non-Maximal Suppression (NMS). The description of the
architecture for rotating the sampling patterns and computing
the rBRIEF descriptors was not elaborated. The authors in [19]
presented the implementation of ORB feature extraction using
image pyramid to obtain scale invariance. However, the au-
thors have not provided sufficient accuracy evaluation of the
approximation methods used in their architecture.

The aforementioned works focus on non-streaming architec-
tures for feature extraction in which the input image frame is
first stored in memory. The pixels are then sequential accessed
and processed by time multiplexing circuitries. This reduces
computational resources, but results in increased hardware area
for buffering and significantly lower throughput. On the other
hand, stream processing architecture offers tremendous bene-
fits. It not only leads to higher throughput, but also eliminates
the need of large image frame buffers resulting in reduction
in both power dissipation and hardware utilization [12].

B. Contributions

This paper presents a low complexity stream processing
architecture that is capable of extracting rBRIEF features from
high-throughput video frames. The main contributions of this
paper are:

• A novel deep-pipelined architecture that can extract
rBRIEF feature descriptors on-the-fly from high-rate in-
put pixel streams without utilizing any image frame
buffers.

• An enhanced moving summation strategy is proposed to
calculate the key-point’s patch moments, which signif-
icantly reduces the hardware complexity. The proposed
architecture does not use any conventional multipliers to
perform rBRIEF feature computation. Instead multiplier-
less circuitries leveraging on single constant multiplica-
tion are introduced throughout the architecture to avoid
the use of costly multipliers.

• Approximate computation based on novel angle dis-
cretization methods is applied to compute the orientation
of the patch. In addition, a folded architecture is proposed
to rotate the BRIEF point-pairs by exploiting the sparsity
of key-points.

• A comprehensive evaluation on the effect of approxima-
tion and bit-width truncation is undertaken to obtain the
optimal trade-off between accuracy and complexity of the
proposed architecture.

This paper is organized as follows: Section II provides a
background on the BRIEF and rBRIEF feature extraction.
Section III provides detailed description of the proposed
feature extraction architecture. The implementation results in
terms of efficiency and accuracy are discussed in Section IV.
Finally, Section V concludes the paper.
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II. FEATURE EXTRACTION

A. Binary Robust Independent Elementary Features (BRIEF)

The BRIEF [4] binary feature descriptor is extracted from
image patches centered at detected key-points (e.g. corners).
The extraction process relies on a set of binary tests that
compares the intensity of each BRIEF point-pair in the
smoothed image patch to generate a bit-string. Specifically,
the BRIEF descriptor is a nd dimensional bit-string where
each bit corresponds to the comparison result in (1).

τ(p; a, b) :=

{
1 if p(a) < p(b)

0 otherwise,
(1)

where p is the smoothed image patch, p(a) and p(b) are the in-
tensity of a BRIEF point pair at location a and b, respectively.
The BRIEF descriptor can be expressed as follows.

fnd
(p) :=

∑
1≤i≤nd

2i−1 τ(p; ai, bi). (2)

It is essential to consider the number of binary tests as well
as the distributions of samples in the hardware implementation
as they could dramatically impact the speed, efficiency, mem-
ory storage, and recognition rate. Results in [4] suggest that a
descriptor of 200 bits and beyond do not yield notable increase
in recognition rate. BRIEF descriptors of 256 bits yield near-
optimum result and descriptors of 512 bits only provide a small
improvement. As our goal is to implement a high-throughput
feature descriptor extraction which has low complexity, our
architecture will be based on 256-bit descriptors.

B. Rotation-Aware Brief (rBRIEF)

rBRIEF [5] has emerged to overcome the limitations of
the BRIEF descriptor which suffers from poor invariance to
rotation and scale changes. This is achieved by computing
intensity centroid [21] of the image patch. The intensity
centroid algorithm first calculates m01 and m10 which are the
moments of the key-point’s patch:

m01 =
∑
x,y

y × px,y, m10 =
∑
x,y

x× px,y, (3)

where px,y is the intensity of pixel at the position (x,y). Next,
it computes the arc tangent value of m01 and m10:

θ = atan2(m01,m10). (4)

Once the orientation is determined, the positions of the
predetermined BRIEF point-pairs are steered by multiplying
each pair of coordinates with the rotation matrix:[

rx
ry

]
=

[
cosθ −sinθ
sinθ cosθ

] [
x
y

]
(5)

Two characteristics that affect the distinctiveness of a feature
descriptor are variance and correlation. Features with high
variance are more discriminative, while those with low cor-
relation imputes the distinctiveness of the features. Steered
BRIEF exhibits neither low correlation (due to its high in-
trinsic eigenvalues), nor high variance (as once oriented, the
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distribution of the BRIEF point pairs becomes more scattered).
To preserve the high variance of BRIEF and to minimize the
correlation of binary tests, a learning method is applied with
a greedy search among the training tests to determine the best
point pair patterns. Our proposed rBRIEF extractor uses the
learned point pair patterns presented in [5] which improves
the rBRIEF descriptor in terms of correlation and variance.

III. PROPOSED ARCHITECTURE

In this section, we present the proposed rBRIEF architecture
which can be integrated in a feature extraction accelerator for
computer vision systems (e.g. visual SLAM system).

A. Feature Extraction Accelerator

Fig. 1 illustrates the overview of a computer vision system
which tightly couples an embedded processor and the feature
extraction accelerator. The embedded processor offloads the
compute intensive feature extraction process onto the accel-
erator, while it handles other menial tasks such as descriptor
matching. The accelerator receives the pixel stream from an
image sensor at the rate of one pixel per clock cycle. Under the
assumption that the image is read sequentially using a raster
scan mode, the incoming pixels need to be cached locally
using a set of row buffers [12].

To enable the feature extraction for an image at multiple
resolutions of scale invariance, an image pyramid compu-
tation creates multiple additional down-sampled copies, at
successively lower resolutions. The image pyramid can be
implemented using the approach described in [19], [22], [23].
The description of the image pyramid module is beyond the
scope of the paper. In addition, the key-points at each pyramid
level must be first determined by a detector. The detector can
employ FAST or Harris corner detection. The implementation
of the detector has been extensively studied in literature [11],
[13], [24], [25]. The detector is also beyond the scope of this
paper.

The rBRIEF feature extractor computes the 256-bit descrip-
tors from image patches that are centered at the detected
key-points. This paper presents a high-throughput and area
optimized architecture for the rBRIEF feature extractor which
requires intensive computation and consumes a large amount
of resource utilization in feature extraction systems. The
proposed architecture can be easily extended to multilevel
by simply replicating the design in Fig. 2 for each pyramid
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level. As such, our work will lead to significant reduction
in resource and power consumption, and higher throughput,
which is important for deployment on embedded platforms
such as UAVs. It is worth mentioning that compared to existing
implementations e.g. [18], [19], the proposed stream process-
ing architecture does not require any image frame buffers
which significantly reduces the required hardware resources.

B. Row Buffering
As an image from a sensor is sent to the feature extraction

accelerator in a raster scan mode at a rate of one pixel per
cycle, the incoming pixels are cached locally using a set of
row buffers [12]. The row buffer’s implementation in this
paper is different from [12] as it is based on circular buffer
architecture that is realized using block memory bits instead of
shift registers. The length of each row buffer (R) is equivalent
to the horizontal resolution of the image, and hence each
row buffer effectively delays the input by R clock cycles.
Fig. 3 depicts the implementation of the row buffer. The pixels
at the tail end of each row buffer are shifted into a set of
registers to generate a pixel column, which will be processed
by the pipeline feature extraction architecture. The rBRIEF
implementation computes the descriptors from image patches,
where each patch comprises of a 37 × 37 pixel window that
is centered at a detected key-point. Since the row buffers are
required to generate a 37 pixel column, 36 Delay R row buffers
are employed.

C. rBRIEF Extraction Implementation
The rBRIEF feature extractor consists of four units, i.e.

Centroid, Angle, Rotator, and Generator as shown in Fig. 2.

The Centroid unit is used to compute the moments (i.e. m01,
m10) of a key-point’s patch as in Eq. (3). The Angle unit
calculates the orientation angle of the patch based on the
values of the moments. The Rotator unit uses the orientation
angle from the Angle unit to rotate the coordinates of the
pre-determined BRIEF point-pairs as in Eq. (5). The rotated
coordinates of the BRIEF point-pairs are used to access the
corresponding pixel intensities in the window buffer. The
Generator unit fetches the pixel intensities of the rotated
BRIEF point-pairs from the window buffer to generate the
description bits as in Eq. (1). The proposed rBRIEF feature
extractor is designed with a low-complexity deep-pipelined
architecture. The proposed hardware-efficient strategies enable
additional pipeline stages to be introduced in the computation
units (i.e. 5 stages for Centroid unit, 5 stages in Angle unit,
and 9 stages in Rotation unit) to increase throughput, while
still achieving significantly reduced area utilization.

In the following sub-sections, we propose hardware-efficient
strategies to substantially reduce the hardware complexity
of the rBRIEF extraction module without compromising on
the processing throughput and descriptor accuracy. The pro-
posed strategies rely on hardware-efficient moving summa-
tion, multiplier-less circuitry and folded architectures. Moving
summation is a recursive mathematic function that has been
previously presented to calculate auto-correlation in wireless
system [26]. In this paper, we manipulate the calculation
of image moments in the moving summation’s formula such
that it can be effectively computed in hardware. Multiplier-
less circuitry performs multiplication with constants using
shifters and adders instead of actual multipliers [27]. This has
been shown to achieve hardware efficiency for convolution
calculation in wireless systems [28]. In this work, we explore
the accuracy effects of using multiplier-less circuitry for the
computation of the Centroid, Angle, and Rotator units. Finally,
folded architecture was presented in [29] for time multiplexing
to reduce the hardware usage of an offset estimation in
modulation systems. In this work, we investigate how folded
architectures can be used in the Rotator unit to significantly
reduce the resource utilization without compromising on the
accuracy by exploiting sparsity of the key-points.
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Fig. 4: Implementation of Mult Block in the Centroid unit.

1) Centroid Unit: We proposed a moving summation strat-
egy to reduce the hardware complexity for computing the
moments for 37× 37 patches in a stream processing manner.
The proposed strategy mathematically manipulates Eq. (3) to
operate in a recursive manner by i) expressing the current value
and next value with respect to input values, ii) subtracting the
next value from the current value, and simplifying the sub-
traction, iii) rewriting the next value expression with respect
to the current value and the subtraction. The derived formula
is expressed as follows:

m01n+1 = m01n + 18× (Cn + Cn−37)− Sn,

m10n+1 = m10n + xCn − xCn−37, (6)

where

Sn+1 = Sn + Cn − Cn−36,

Cn =

37∑
x=1

px,n,

xCn =

18∑
x=1

x× (p38−x,n − px,n) (7)

The n + 1 subscript denotes the next value of the current
value n. The n−D subscript is the value after delay of D clock
cycles. px,n denotes the pixel intensity of the xth element in
the incoming pixel column of 37 pixels.

The implementation of the mathematical formulation for
the Centroid unit is shown in Fig. 2. Cn is calculated using
an adder tree to accumulate the 37 values of an incoming
pixel column. The computation of xCn utilizes a constant
multiplier block to reduce the hardware resources and power
consumption [28]. The constant multiplier block performs the
addition, subtraction and shift operations to multiply an input
with a constant. We use the Hcub algorithm in [27] to optimize
the number of operations in constant multiplier block. The
circuitry performing the multiplication in the Centroid unit is
shown in Fig. 4.

2) Angle Unit: The processing of the Angle unit consists
of two steps. The first step is to determine the orienta-
tion angle (θ) and the second calculates the rotation terms
(cosθ, sinθ). The orientation angle is computed based on
atan2(m01;m10), which is a costly operation if a direct im-
plementation is adopted. We propose an approximate compu-
tation based on discretization of the angle θ. Firstly, Quadrant
determines the quadrant of the angle based on the signs of
m01, m10. At the same time, the absolute values of m01, m10
are extracted by Abs so that the required angle falls within the
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quadrant [0; π2 ). Then, the angle is discretized into NT values
in the quadrant. Hence θ can only be one of NT possible
values and their tangents can be precomputed. Instead of using
division and atan2 operation, θ can be approximated as θi that
best meets the condition in Eq. (8). The multiplication between
abs(m10) and NT possible tangent values is performed using
a constant multiplier block.

Abs(m01) = Abs(m10)× tan(θi) (8)

After θi is found as one of NT possible values, the values of
cosθi, sinθi can be determined using Look-up Tables (LUT)
instead of using iterative Coordinate Rotation Digital Com-
puter (CORDIC) engines [30], [31]. Each cosθi/sinθi LUT
consists of NT values of cosθi/sinθi based on the discretized
θ angles. The values of cosθi/sinθi are then adjusted using
their sign values. The accuracy of this unit is dependent on
NT , the number of bits used to represent the discretized
angle values (BT ), the number of bits for representing the
centroid moment’s absolute values (BC), and the number of
bits to represent the cos/sin values (BCS). In Section IV-A,
we will explore the bit representations that will lead to the
best accuracy and hardware complexity trade-offs.

3) Rotator Unit: After the rotation terms of the orienta-
tion are calculated, the Rotator unit performs the rotation
with the θ angle on the set of BRIEF point-pairs as in
Eq. (5). The hardware implementation is depicted in the
Rotator unit of Fig. 2. X,Y are the coordinate vectors of
the 512 samples. Performing rotation on a set of 512 samples
for each key-point patch requires large amount of hardware
resources. Theoretically, a total of 2048 multiplications and
1024 additions/subtractions are required. As such, we devised
a hardware-efficient method to achieve this rotation as follows.

The calculation of the Rotator unit comprises of two steps.
First, the coordinates of the sample set are multiplied with
the cosθ and sinθ values using multiplier-less constant mul-
tiplier block. Then an AddSubVector block performs addi-
tion/subtraction of the multiplication’s results to generate the
rotated coordinates.

The proposed multiplier of the Rotator unit is shown in
Fig. 5. To reduce the hardware complexity, we only use 18
constant multipliers instead of multiplying the cosθ and sinθ
values with the 512 sample coordinates. This is possible as the
coordinates of the sample set are within the range [−18, 18]
and can be precomputed. The multiplications of cosθ and sinθ
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with 18 constant values denoted ×1 to ×18 are performed
using a multiplierless Mult Block. Based on the known value
of each element in the coordinate vector, the corresponding
result of the multiplication is either complemented (i.e negative
value) or not (i.e positive value) to obtain X×cosθ, X×sinθ,
Y×cosθ, and Y×sinθ. These are used to generate the rotated
coordinates.

An efficient folded circuitry as illustrated in Fig. 6 is
employed for the AddSubVector. This circuitry employs time
multiplexing to reuse the hardware resources that results in
significantly reduced hardware usage compared to a straight-
forward implementation. This approach leverages on the as-
sumption that the Non-Maximal Suppression (NMS) operation
using a 7× 7 window [32] in the detector does not allow the
detection of two key-points in 4 continuous pixels. We employ
a 4-folded circuitry to perform the addition/subtraction of the
rotation in 4 consecutive clock cycles, where 128 additions and
128 subtractions are simultaneously computed in each cycle.
Two shift registers (SR) are needed to store the resulting 512
rotated coordinates (rX and rY).

4) Generator Unit: The Generator unit receives the rotated
samples that are calculated by the previous component and is
responsible for computing the 256-bit descriptor from these
samples. A possible approach is to cache the image patch in a
window buffer and the rotated samples in a buffer that allows
2 samples to be read (i.e. using 2 ports memory blocks) per
cycle for performing a binary test. In this case, 256 cycles
are required to generate the 256-bit descriptor of a key-point.
However, if a new key-point is identified within this duration
of 256 cycles, its corresponding image patch cannot be loaded
into the window buffer which is currently being accessed
for computing the descriptor of the previous key-point. As
such, this new key-point will have to be dropped if only one
Generator unit is employed.

In order to maintain the processing throughput at the rate of
the incoming pixels while minimizing the number of dropped
key-points, we employ multiple components that can compute
the descriptors of several key-point patches in parallel. It is
worth mentioning that this approach is different from [19] as
we only replicate the descriptor generator component (con-
sisting of window buffers and binary tests) instead of the
entire rBRIEF extraction module. This approach is possible
because the previous units (i.e. Centroid, Angle and Rotator)
still maintains a continuous calculation for the subsequent
key-points. This results in a large reduction in hardware
consumption compared to the work in [19].

A Distributor is responsible for selecting an available

descriptor generator components for a new key-point. If at
least one descriptor generator component is available when
a new key-point is detected, the key-point is not dropped.
While a sufficient number of descriptor generator components
is required to guarantee an acceptable key-point dropping
rate, a large number of components will result in increased
resource usage. The optimal number of descriptor generator
components (ND) which leads to minimal key-point dropping
rate is discussed in Section IV-A.

IV. RESULTS AND DISCUSSION

In this section, we first discuss the trade-off studies between
accuracy and hardware complexity based on the following
design parameters that was described in the previous sections
(i.e. NT , BC , BT , BCS , and ND). The design parameters that
provides the best trade-offs will be adopted in our proposed
architecture. The proposed rBRIEF descriptor extractor is im-
plemented using Verilog hardware description language based
on these design parameters and targeted on the Altera Arria
V GX 5AGXFB3 device which is hosted on the Arria V GX
FPGA Starter Kit. Finally, the implementation results are re-
ported and compared with the state-of-the-art implementation
in terms of performance, accuracy, and resource utilization.

A. Impact of Proposed Approximation Methods on Accuracy

In the Angle unit, an approximation is applied to calculate
the centroid angle of a patch centered at a key-point. The
centroid angle is discretized into NT possible values and
the multiplication of discretized angle values are represented
with BT bits. We have used Displacement and Hamming
distance to evaluate the effects of our approximation methods
for the proposed rBRIEF feature extractor. Displacement in
rotated coordinates between the actual calculation and the
approximate calculation is employed to quantitatively evaluate
the accuracy of the approximation. The actual calculation
employs double precision floating point that is costly and
is not suitable for hardware implementation. The parameters
that lead to the best design trade-offs are selected based on
Displacement which measures the robustness of the approxi-
mation method to the precision loss due to angle discretization.
Hamming distance, which is a metric that is often used in
feature matching, is employed to validate the effect of the
approximation method on the final output descriptors using the
image dataset presented in Section IV-B. The Displacement is
defined as follows:

Displacement =
√
(rx− rxac)2 + (ry − ryac)2, (9)

where (rxac, ryac) is the rotated coordinate obtained from
the actual calculation while (rx, ry) is the corresponding
coordinates that are computed using our approximated method
in hardware. The image set “Graffiti” from “Affine Covariant
Regions” Dataset [33] is employed in our investigations and
the Harris-corner algorithm is used to detect a set of key-
points.

Fig. 7 shows the accuracy evaluation of angle discretization
with respect to NT in terms of (a) Displacement and (b)
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Fig. 7: The impact of rotation angle discretization on accuracy.
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Fig. 8: Investigating the number of bits for Centroid moments.

Hamming distance. BT ]n denotes ]n bits that are used to
represent the discretized angle values. It can be observed that
Displacement is significantly reduced when NT increases to
25. Hamming distance has the same trend but presents small
variation. Interestingly, increasing NT requires an increased
number of bits (BT ) to represent the discretized angle’s values
so that the accuracy does not degrade. For example, if 9 bits
are used to represent the discretized angle values (i.e. BT 9),
the displacement progressively reduces till NT = 25 but then
exhibits an erratic increase in displacement when NT > 25.
However, if BT is set at 11 (i.e. BT 11), the displacement
progressively decreases in the range 25 < NT < 50. Based
on this investigation, we have chosen the design parameters
NT = 25 and BT = 11 which provides the best trade-
offs in accuracy and hardware complexity. Fig. 7b validates
the selection with an acceptable loss in Hamming distance.
Choosing larger design parameters yields a small gain in
accuracy but incurs high hardware complexity.

The optimal number of bits (BC) for representing centroid
moments is also investigated. Fig. 8 shows (a) the Displace-
ment and (b) the average Hamming distance of approximate
calculation with respect to varying number of bits used for
representing the absolute value of centroid moments (i.e.
m01,m10). The displacement is also reported with different
angle discretization options. NT ]n denotes that the angle is
discretized with NT = ]n values. It can be observed that
the average displacement sharply increases when BC reduces
below 9. Interestingly, with the choice of NT = 25 (i.e. NT 25)
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Fig. 9: Investigating the impact of number of bits for cos/sin’s
values on accuracy.
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Fig. 10: Dropping rate for different number of replications of
the descriptor generator components.

both Displacement and Hamming distance are further reduced
when BC increases from 9 to 12 bits and the reduction starts
to plateau at BC > 12. Therefore, we have chosen BC = 12
as the optimal bit-width for representing the absolute value of
centroid moments in the proposed hardware implementation.

In addition, the optimal bit-width of cosθ, sinθ values (i.e.
BCS) is investigated to further reduce the hardware complexity
of the the Rotator unit. This study is based on the optimal
discretization of the centroid angle NT = 25 which we have
determined earlier. Fig. 9 illustrates the average coordinate
displacement with varying BCS with respect to each NT . The
displacement for each NT rapidly decreases as BCS increase
to 7. The displacement of all the 25 cases is below 0.25
if BCS = 7 bits is employed to represent the cosθ, sinθ
values. Further increase in BCS does not lead to any notable
displacement reduction. Therefore, BCS = 7 is selected for
the proposed architecture.

In the Generator unit, multiple descriptor generator com-
ponents are required to process the key-points in parallel.
The number of component replications (ND) is chosen with
respect to the density of key-points (i.e. the number of detected
key-points per image) and the acceptable rate of dropping
key-points. The density is adjusted to a fixed number based
on the corner scores of the Harris-corner detector. Fig. 10
shows the dropping rate with respect to key-point density for
different number of component replications. ND]n denotes
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Fig. 11: Image dataset. From Top left: Bike, Boat, Graffiti,
and UBC.

the replication of ]n descriptor generator components. As
can be seen, increasing the number of descriptor generator
components from 1 to 4 achieves considerable reduction in
dropping rate. The use of 4 descriptor generator components
(i.e. ND4) reduces the dropping rate to below 5 key-points
for the density of 100 key-points/image. Therefore, in the im-
plementation of the proposed rBRIEF descriptor, 4 descriptor
generator components are used in the Generator unit.

B. Hardware Implementation Results

This sub-section reports the FPGA implementation results
of the proposed rBRIEF feature extractor based on the design
parameters described in the previous sub-section. Table I
summarizes the design parameters and compares the hard-
ware utilization of the proposed implementation (denoted
as Proposed) with the implementation in [19] (denoted as
Existing). To obtain a fair comparison, both implementations
targets the Arria V GX 5AGXFB3 device and employ the
same number of descriptor generator components (ND). We
only report the hardware utilization of sub-modules in the
existing implementation that have a corresponding function in
Proposed, which excludes the detector and pyramid implemen-
tation. It can be observed that the proposed implementation
consumes significantly reduced number of Logic Elements
(LEs) and Adaptive Logic Modules (ALMs) compared to
the existing implementation. The LE and ALM utilization

TABLE I: Comparison of Hardware Utilization

Existing [19] Proposed

ND 4 4
NT 16 25
BC 24 12
BT 16 11
BCS 9 7

Logic Elements 19720 12523
ALMs 21436 10019
DSP 92 0
Memory Bits 76000 117739
fmax (MHz) 150 177
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Fig. 12: Accuracy comparison between the existing and the
proposed methods.

of Proposed is only 63.5% and 46.7%, respectively, of the
existing architecture. The memory bits usage of Proposed is
larger than that of Existing. However, the memory bits required
in both implementations consume only a fraction (i.e. about
0.6%) of the total FPGA space. Interestingly, the proposed im-
plementation avoids the use of power-hungry DSP blocks due
to utilization of the constant multiplier blocks. In contrast, the
existing implementation employs 92 DSP blocks. Furthermore,
the hardware efficient strategies adopted by Proposed have
resulted in a higher maximum clock frequency. In particular,
Proposed achieves a higher operating frequency of 177 MHz
compared to the clock frequency of 150 MHz for Existing on
the same target FPGA platform.

In order to evaluate the accuracy of both hardware imple-
mentations, four image sets depicted in Fig. 11: Bike, Boat,
Graffiti, and University of British Colombia (UBC), from the
image dataset in [33] are employed. Fig. 11 also illustrates the
key-points and their Hamming distance between the accurate
rBRIEF descriptors and that of the proposed implementation.
These results are obtained using Matlab to simulate the actual
hardware computations based on the parameters reported in
Table I.

The execution of both implementations based on the design
parameters in Table I are simulated to evaluate the accuracy.
The average Hamming distance of the 256 descriptors bits
between each implementation and the actual computation
which uses double precision floating points is employed as the
accuracy metric. A lower average Hamming distance indicates
that the corresponding implementation produces more accurate
results.

Fig. 12 compares the accuracy between the existing and
the proposed implementations with respect to the accurate
calculation of rBRIEF descriptor in terms of (a) Hamming
distance and (b) Matching Count. We choose a Hamming
distance threshold of 60 for key-point matching. Due to the
use of optimal design parameters that have been determined

TABLE II: Dynamic Power and Hardware Resource Utiliza-
tion

Centroid Angle Rotator Generator Total

LEs 1041 1233 8727 1502 12503
Registers 1212 1589 5817 1956 10574
Power (mW) 7.33 15.23 19.84 413.75 456.15
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TABLE III: Performance Comparison

Clock Freq.Throughput LatencyFrame Rate Resolution
(GHz) (MPix/s) (ms) (FPS)

Intel-i5 [19] 4.3 28 74.1 13.5 1920×1080
GPU [19] 1.05 40 52.1 19.2 1920×1080
FPGA1 [19] 0.150 150 13.8 72.3 1920×1080
FPGA2 [18] 0.203 - 14.8 67 640×480
Proposed 0.175 175 11.9 84.4 1920×1080

from our rigorous design exploration, Proposed achieves about
50% reduced Hamming distance compared to Existing for all
4 image sets considered. For example, the average Hamming
distance of the descriptor bits for Proposed is lower than
15 bits compared to the Hamming distance of the Existing
implementation with over 30 bits for the image sets ’Boat’
and ’UBC’. In Fig. 12b, due to image modification effect on
rBRIEF matching performance the approximations of the pro-
posed and the existing implementation have almost the same
matching performance in ’Bike’ and’Boat’ datasets. Existing
is slightly better in ’Graffiti’ but suffers from considerable
degradation in ’UBC’ compared to Proposed.

A post-place-and-route simulation in ModelSim was used
to obtain accurate signal transitions for analyzing the power
consumption of the FPGA implementation using the Pow-
erPlay Analyzer tool. Table II reports the dynamic power
dissipation and hardware utilization of each hardware unit
with an operating frequency of 175 MHz. The Rotator unit
consumes the largest number of LEs and registers accounting
for 70% and 55% respectively of the entire rBRIEF feature
extractor to perform angle rotation for 512 samples. Due to
the use of window buffers to store 37×37 key-point patches,
which is replicated 4 times, the Generator unit consume
90.7% of the total dynamic power consumption of the rBRIEF
extractor. The Centroid and the Angle units consume a small
amount of resource usage due to the hardware efficient mov-
ing summation approach adopted for calculating the centroid
moments and the approximate discretization approach for
determining the angle. In particular, the Centroid and the Angle
units consume only 8.3% and 9.8% of total LEs, and 11.5%
and 15% total registers, respectively. In addition, these two
units only dissipate a small amount of dynamic power, i.e.
1.6% and 3.3% respectively of the total power consumption
of the rBRIEF extractor.

Finally, Table III compares the performance between the
proposed implementation and the existing implementations.
The performances of the FPGA implementations, denoted as
FPGA1 and FPGA2, are obtained from [18] and [19] respec-
tively. The performances of the implementations on CPU and
GPU platforms, denoted as Intel-i5 and GPU respectively,
are taken from [19]. The Proposed implementation offers the
lowest latency (< 12ms which enables real-time processing at
60fps) on video frames of 1920×1080 resolution at a clock
operating frequency of 175 MHz.

V. CONCLUSION

This paper presents a hardware-efficient pipelined archi-
tecture for rBRIEF feature extractor which is capable of

processing a pixel stream at high throughput without the need
of any image frame buffers. To lower the hardware complexity,
we proposed a moving summation strategy for calculating the
key-point patch moments. Approximate computation strategies
have been devised to determine the patch’s orientation angle
and rotating the BRIEF point-pairs. In addition, multiplier-
less circuitries are introduced to avoid the usage of costly
multipliers throughout the pipelined architecture. Extensive
design exploration have been undertaken to determine the
design parameters that lead to the optimal accuracy and
hardware complexity trade-offs. The proposed implementation
significantly reduced the LEs by 62.42% while resulting in an
increased accuracy by 50% when compared to the state-of-
the-art implementation. The proposed architecture is able to
process high-resolution (1920×1080) images at 60 fps while
consuming only 239.34 mW power. In our future work, we
plan to integrate the proposed feature extraction accelerator in
a visual SLAM system for autonomous navigation of UAVs.
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